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CHAPTER 1
INTRODUCTION

Weakly coupled oscillators have played a large role in the fields of physics,
mathematics, biology and engineering for some time with applications in areas ranging
from the dynamics of large space antennas (Levine-West and Salama [1]) to neural pattern
generation (Ermentrout and Kopell [2]). The formulation of such a wide array of
problems could not possibly be identical, though the resulting dynamics tend to be similar.
The interest here is in a ring of weakly coupled nonlinear oscillators with identical external
forcing applied to each, with the weak coupling generated by linear extensional, elastic
elements. The engineering application of interest is in the vibrations of bladed disk
assemblies which is of considerable concern to the structural vibration design of axial
compressors, particularly when designing against the phenomenon of rogue blade failure
in such turbomachines. This failure results in a small number of contiguous blades
attaining excessive amplitudes of vibration, and failing during certain engine operation
conditions, while the remaining blades vibrate with small amplitudes and are well within
fatigue and wear limits. We use a generic model for each oscillator to keep the discussion
as general as possible, and to point out differences between linear and nonlinear
oscillators. The external forcing on the oscillators will be chosen to be, effectively, a
parameter that can be varied, but with the property that the amplitude applied to each blade
is equal while the phase value may vary from oscillator to oscillator in a prescribed
fashion. We stress that we are considering weak coupling of identical oscillators with
external periodic forcing since it has been shown (Vakakis [3], Samaranayake et al. [4])
that all oscillators are in resonance when weakly coupled, as opposed to the strong
coupling case where only two system modes are in resonance.

The primary motivation for this discussion comes from Samaranayake et al. [5]
where the model we analyze in this work is presented, but the analysis there is restricted to
the three oscillator case with only one oscillator being forced. Not many studies have been
published dealing with the dynamics of externally forced, weakly coupled, nonlinear

oscillators, though many studies on unforced nonlinear vibrations, and forced response of




strongly coupled linear oscillators have been performed. In recent years, Vakakis [3] and
King and Vakakis [6] have studied free and forced response of weakly coupled nonlinear
oscillators with an eye towards bladed disk assemblies. These authors, along with Vakakis
and Caughey [7], have successfully attempted to show the connection between mode
localization in such systems and the concept of similar and nonsimilar nonlinear normal
modes that was introduced by Rosenberg [8] for the vibratory response of nonlinear multi-
degree-of-freedom systems. In all these studies, however, only a few equilibrium
solutions are shown along with some stability analysis, and therefore form an incomplete
illustration of the dynamics. Our objective here is to use the constructs of group theory
and equivariant bifurcation analysis to show a far more complete picture of the dynamics
that are possible.

Equivariant bifurcation theory is not a new development in mathematics, although
its use in the analysis of physical problems is relatively recent. The utility of equivariant
bifurcation theory has increasingly been noticed by researchers in many fields in the past
15 years. The seminal publications in this area are the works of Golubitsky and Schaeffer
[9], Golubitsky et al. [10], and Gaeta [11] where the foundations for the field are described
in terms of the algebraic [9, 10] and geometric [11] properties. Coupled oscillator systems
have been analyzed using this kind of analysis in Golubitsky and Stewart [12] and Collins
and Stewart [13] for example, but only the work of Ashwin and Swift [14], to the authors'
knowledge, has attempted to describe the dynamics of an arbitrary number of weakly
coupled oscillators in a systematic way. The interest in that work stems from some
neuroscience and biological applications, and, therefore, their network is quite different
from ours. Thus, their conclusions regarding dynamics are not applicable, though some of
their analysis approach is quite useful. This work [14] m conjunction with [5] form the
primary motivation for the research proposal presented here, and with the construct
presented in these studies, we will -attempt to describe the dynamics of the systém of
interest.

We proceed in the following fashion. First, a brief introduction to group theory
concepts and equivariant bifurcation theory is provided by presenting a set of definitions

that describe the terminology and concepts used in the subsequent analysis. We then
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attempt to show that this analysis, for our purposes, is a generalization of the familiar
linear transformation theory of linear algebra. In chapter 3, we present the derivation of
the model we wish to use for the physical system with the work of Samaranayake et al. [5]
forming the basis of the motivation. Chapter 4 is devoted to a preliminary investigation
into classifying the pos'sible solutions for the system. Finally, in chapter 5, we outline the
specific work on this problem that will result in a much more complete picture of the

dynamics of the weakly coupled cyclic system.
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: CHAPTER 2
A BRIEF INTRODUCTION TO EQUIVARIANT BIFURCATION THEORY

The field of equivariant bifurcation theory is grounded in the principles of group
theory, group representation theory, abstract algebra, and bifurcation theory. The purpose
of this section is to place the pertinent concepts in these areas, for our discussion, on a
foundation that is appropriate to the objectives of this work. Our interest here is from the
point of view of matrix groups, particularly the group of invertible n X n matrices over the
field of real numbers, known as the general linear group and denoted by GL(n). Our
approach to equivariant bifurcation theory is to generalize the notions of linear
transformations acting on a vector space, and to determine the resulting dynamics for
systems that obey certain properties under particular classes, or subgroups, of GL(n).
Therefore, section 1 starts by presenting a review of some familiar concepts in linear
algebra, which is then followed by some elementary notions of group theory.

Necessarily, then, this section is predominately comprised of definitions. Section 2
applies these concepts to dynamical systems in a general framework. The main results of

the equivariant bifurcation theory are then stated in the form of theorems 1 and 2.

2.1 Linear Algebraic and Group Theoretic Preliminaries

We begin with a review of some linear algebra that is based predominately on the

discussion in Friedberg et al. [15].

Definition 1: The Cartesian product of two non-empty sets S and T is the ordered set:
SxT= {(a,b)| a an element of S,b an element of T} .
Let S, T and R be non-empty sets. A binary operation is a mapping of SXT into R, i.e., if

sisin S, tisin T, and v is a binary operation, then v(s,t) is an element of R.

Definition 2: A field F is a set in which two operations called addition and

multiplication, denoted + and - respectively, are defined so that for each pair of elements




a, b in.F, there are unique elements a+b and a- b in F, such that the following conditions

hold for all elements a, b, c in F:

Fl. a+b=b+aand a-b=b-a (Commutativity of addition and multiplication);

F2. (atb)+c = a+(b+c) and (a-b)-c=a-(b-c) (Associativity of addition and
multiplication); ‘

* F3. There exist unique elements denoted 0 and 1 in F such thatO+a=aand 1-a=a
(Existence of identity elements for addition and multiplication);

F4. For each element 2 in F and each nonzero element b in F, there exist elements ¢ and d
in F such that a+c = 0 and b-d = 1 (Existence of inverses for addition and
multiplication); and

F5. a-(b+c)=a-b+a-c (Distributivity of multiplication over addition).

As a point of terminology, we will call elements from a field scalars.

The two fields of interest here are the real and complex number fields with the standard
definitions of multiplication and addition. The definition above is only given for

completeness since for the definition of a vector space, the notion of a field is needed.

Definition 3: A vector space V over a field F consists of a set of ordered n-tuples of

scalars, and two operations called 'addition’ and 'scalar multiplication' that are defined as

follows. Addition: for each pair of elements x, y in V, there is a unique element X+y in

V. Scalar multiplication: for each element a in F, and each element x in V, there is a

unique element ax in V. These two properties are called closure under addition and

scalar multiplication, respectively, and in addition to these two properties, a vector space

must also satisfy the following addition and multiplicaﬁon rules:

Addition:

Al. Foreachtriple X, y,and zin V, (X + y) + z = X + (y + z) (Associativity of addition);

A2. There exists an element in V denoted 0 such that x + 0 = x for each element x in V
(Additive identity);

A3. For each element x in V, there exists an element y in V such that x + y = 0 (Additive

inverse);




A4. For each pair of elements x, y in V, X +y =y + X (Commutativity of addition),

Multiplication:

MI1. For each pair of scalars a and b in the field F, and each element x inV, (ab)x = a(bx)
(Associativity of Scalar multiplication);

M2. For each element x in V, there exists an element denoted 1 such that 1x = x
(Multiplicative identity);

M3. For each element a in the field F, and for each pair of elements x and y in V, a(x + y)
= ax + ay (Distributive property number 1); and

M4. For each pair of elements a and b in the field F, and for each element x in V, (a + b)x
= ax + bx (Distributive property number 2).

We will refer to elements of the vector space V as vectors.

Remarks:

(1). The binary operation of addition in definitions 2 and 3, although denoted similarly,
can be quite different. When not clear by the context which is meant, it will be stated.
(2). With the above definition, if € denotes the field of complex numbers, then the

notation €" is used to represent the Cartesian product of n complex number fields,

C"=CxCx -+ xC.

N
n times

It is a well-known theorem in linear algebra that a Cartesian product of a finite number of
identical fields forms a vector space, and therefore an element of the set C" is a vector
containing an ordered n-tuple of complex-valued scalars. Note that for convenience, the

field can be changed from real to complex by making the standard identification z = x +
iy, 1= v-1, which essentially defines an equivalence between the real plane (Rz) and the
complex numbers (), and results in a more compact notation. We will not exploit any

of the geometrical structure inherent in C" in our analysis since this identification is

simply a convenience of notation, and it reduces the dimensions of the matrices in GL(n)




by a factor of four. The field and vector space dealt with in particular for our purposes
will be R andR", and € and C", respectively, by this identification;

(3). Note that we have not specified any of the binary operations, either for the field or
the vector space, but simply stated their existence and properties. This has been done
purposely to keep in mind that we are generalizing the concept of linear transformations

in the discussion below.

Definition 4: A subspace W of a vector space V is a subset of V that is a vector space
under the conditions and properties of definition 3. Let S be a non-empty subset of V
(not necessarily a subspace). Then, a vector x in V is said to be a linear combination of
elements of S if there exist a finite number of elements y,, y,, .., y, in S and scalars a, a,,
., a suchthatx=ay, +ay,+...+ay,. If asubset W of a vector space V consists of all
linear combinations of a finite set of vectors T = {y,, ,, .., ¥, }, then this set of vectors is

-said to be the span of W, or span(T) = W.

Remark: It can be shown by a direct application of definition 3 that span(T) is a subspace

of the original vector space V (see, for example, [15, pp. 29-30]).

Definition Sa: A finite set of vectors y,, y,, .., ¥,, belonging to a vector space V, is said to
be linearly dependent if there exists a finite number of distinct scalars a, a,, .., a, not all

zero, such that ayy, + ay, + ...+ay, = 0. If no such set of scalars exists, then S is said to

be linearly independent.

Definition Sb: A spanning set of linearly independent vectors is called a basis. The
dimension of the subspace spanned by such a basis set of vectors is given by the order of
the minimal basis set. It is easily shown that a minimal spanning set for a given subspace

forms a basis for that subspace.

Definition 6: * A linear transformation f : V — V is a map of a vector space into itself

such that the addition and scalar multiplication operations of the vector space are




preserved by the following rules: f(x, +x,) = f(x,) + f(x,), and f(cx) = cf(x) where x, x,, X,

are elements of V and c is a scalar.

Remarks:

(1). Note that the operations cx and cf(x) are both scalar multiplication since x and f(x)
are elements of the same vector space.

(2). This definition opens up an entire chapter in linear algebra involving eigenvalues,
eigenvectors, eigensubspaces, etc. that are important concepts we assume the reader is

familiar with.

We now abstract these concepts by introducing groups, and thus the above definition
forms our point of departure from linear algebra to abstract algebra. The definition of a
group that we present is both abstract, and, for our purposes, functional. In the following,

X is a non-empty set.

Defintion 7; A group is a pair (X, i) such that p is an associative binary operation on the

non-empty set X that contains an identity element, and every element in X has an inverse

contained in X. A subgroup H of a group X is a subset of X with the following

properties:

(a). If a and b are elements of H, then p(a,b) is an element of H, where u(-,-) denotes the
binary operation (Closure);

(b). The subset H contains the identity element (Existence of Identity); and

(c). If ais an element of H, then the inverse of a is an element of H (Existence of
Inverses).

Thus, the subgroup inherits the binary operation defined for the original group from

which it 1s formed.

Remark: The concept of a group, for our purposes, can be abstracted from the definition
of a vector space as given in definition 3, by stripping away all but a fundamental set of

properties. First, we remove the notion of linear combinations. Next, notice that scalar




multiplication is dependent on two different classes of mathematical objects, scalars and
vectors, in order to perform the combination. In addition, we eliminate scalar
multiplication and leave the operation of addition intact which involves only vectors.
Thus, if we remove all properties in definition 3 except for (Al - A3), we have a group
composed of the set V and the binary operation of vector addition. If we include property

A4, the group is said to be Abelian since it is a commutative group.

We have given an abstract definition of a group since our discussion of groups in
chapter 4 will be both in terms of matrix groups and abstract groups. In this light,
suppose we wish to work with two different groups. What mapping will allow us to

move back and forth between these groups such that their structure is preserved?

Definition 8: Let (G,o) and ( H,*) be two groups with associated binary operations. A
homomorphism of the group (G,o) into the group (H,*) is amap T of G into H such that
if x and y are a pair of elements in G then T(x o y) = (T(x))*(T(y)). An isomorphismis a
one-to-one homomorphism.

A homomorphism, therefore, is a map that preserves the binary operations of the two

groups.

As mentioned above, our interest is in the gencral linear group, GL(n). This
group is part of a larger class of groups known as Lie groups, and the results stated below
hold for these more general objects. We will not rely on Lie group theory however, and
we simply note that we will use this term to denote subgroups of GL(n) with certain
technical restrictions that are not pertinent to our discussion. Further note that the term
compact Lie group will refer to elements of GL(n) with finite entries. From this point

onward, the discussion in this section is based predominately on reference [10].

Definition 9: Let I' be a Lie group and V a finite-dimensional real vector space. I acts

linearly on V if there is a continuous mapping, called the action, which maps I'xV —» V
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such that for Y and v elements of I" and V, respectively, (y,v) = 7+ v, where the 'dot’
represents the operation of y on v, with the following properties:

(a). For each yin T, the mapping p,:V — V defined by p,(v) =y-v is linear; and

(b). If v,,v, in I"then v, -(yz . v) =(y,'yz)-v.

Remarks:

(1). The 'dot' operation is not the binary operation that defines the group itself but is how
the group is operating on the vector space, which may be independent of the group
operation. _

(2). Property (a) shows that the mapping defining the group action on the vector space V
is a linear mapping. Furthermore, the mapping p that sends yto p,, an element of
GL(n), is called a representation of I on V, and therefore, necessarily, we will be
discussing matrix representations acting on finite dimensional vector spaces. The
mapping defining this matrix representation of I" on V in definition (9) is a

homomorphism.

(3). Property (b) states that the group action defined by the 'dot’ is distributive.

Thus, the action and representation are essentially identical, but differ in point of
view. The action shows how each element of the group I' transforms each element of the
vector space V, while the representation shows how the group transforms the whole
space. For example, the group of rotations O(2) acting on R? form the group of
orthogonal linear operators that map R? onto itself. These properties do not rely on a
choice of basis, but upon choosing a suitable one, a matrix representation can be
constructed. Since we are considering a finite dimensional vector space, we can construct
such a matrix representation by defining how each element of O(2) transforms each basis
element of the vector space. This is the same procedure as when computing a matrix
representation of a linear transformation. Since groups have less structure than linear
transformations, however, we view them as generalizations of linear transformations in

this context.
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. We expect that since an infinite number of different basis sets may be chosen for
any given vector space V, there may be differing descriptions of the same action, that is,
in general, for any action, the representation is not necessarily unique. In this case, we

say that two actions are isomorphic in the following sense:

Definition 10: Let V and W be vector spaces of equal dimension and assume that the
group I acts on both V and W. These two spaces are I'-isomorphic if there exists a
(linear) isomorphism A that maps V to W such that A(y-v)=y-(Av) forall vin V, yin
I.

Remark: Note that the action of y on the left-hand side of the equation is on V while on
the right it is on W. Therefore, the matrix A is essentially a change of coordinates that

commutes with the action of the group I'.

If we consider this isomorphism property in terms of a matrix representation, with
matrix multiplication for the group operation and the operation of the isomorphism A,

then this property can be expressed as,
(Ap)v = (P AV,

where A is now a matrix, and, as above, p, is the matrix representation of the group
element v, in GL(n). This clearly states that the two matrices A and p, commute. If A is

an invertible matrix, then we have the usual similarity transformation acting on p..

Definition 11: Let I" be a Lie group acting linearly on a vector space V. A subSpace \'
of V is called T-invariant if y- w is in W for every w in W. A representation, or action, of
I" on V is irreducible if the only I'-invariant subspaces of V are {0} and V itself. A
subspace W of V is said to be I'-irreducible if W is I'-invariant and the action of I'on W

is irreducible.
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We now present an example presented in [10, p.34] to hopefully make some of these

concepts more concrete. This example will be referred to in the next section as well for

the same purpose.

Example:
Consider the group O(2) acting on the space R’. The group O(2) is comprised of

rotations about a fixed axis described by the special orthogonal group SO(2) with
determinant of +1, and equivalent rotations to these with determinant -1. Thus, there is
an additional element in O(2) that is applied to the elements of SO(2) to change the sign
of their determinant. This element will be called the flip element. Therefore, we need

only to describe two elements in order to describe the group O(2). Let © be an element

of SO(2), and let x represent the flip. Define their actions on the real 3-space by:

OF (x,y,z) = (xcos26~ y sin26, x sin20 + y cos 26, z),

x-(x,y,2) = (x,~y,~z),

with the obvious matrix representations:

[c0s20 -sin20 0] [1 o oWl
Pe =| Sin20 cos26 0}, p.={0 -1 0.
l 0 0 lJ [o 0 -1J

We now consider the properties listed in definition 11, beginning with invariance.
The rotation element rotates only the two-dimensional (x,y)-plane. Thus, if we define the

subspace V, by:

Vv, = R*x{0} ={(x,y,0)},
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then the action of the rotations leaves this subspace invariant. Furthermore, note that the
flip element also leaves this subspace invariant. Thus, this is one O(2)-invariant

subspace. Additionally, note that the rotation element leaves the z-axis fixed, therefore

define the shbspace V, by:

V, ={0}x R ={0,0,z}.

Then the rotation element leaves this subspace invariant. Further, again, the flip leaves

this subspace invariant. Thus V, is also an O(2)-invariant subspace.

Now consider the notion of irreducibility. Since any vector in the (x,y)-plane can
be rotated to any position in the plane by an appropriate choice of the angle 0, and the flip
action places any arbitrary vector in the (x,y)-plane into another quadrant of the plane,
O(2) acts irreducibly on.Vl as well. The same holds true for the subspace V,. We will

refer back to this example in the following section.

Definition 12: A representation of a group on a vector space V is absolutely irreducible

if the only linear mappings on V that commute with the group are scalar multiples of the

identity.

Example:
Consider the group O(2) acting on the vector space R . Asin the above example, we

need to define the actions of the rotation and the flip elements of O(2) on this space. We

choose the following standard definitions given in terms of their matrix representations:

[ cos6 sin@] | [1 0]
Psoc2) :l_—sine cosG_I’ P =|_0 —IJ.

Now consider a general 2X2 matrix is of the form:
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[a b]
A=LC d_]’

By a direct computation, for the matrix A to commute with the matrix representation of
SO(2), the following conditions must hold: a=d, ¢ =-b. For the matrix A to commute
with the flip matrix, by a direct computation, it is easy to see that the following
conditions must hold: a=d, ¢ =b. For both of these conditions to hold simultaneously,
therefore, the only matrices that commute with the group O(2) acting on the space R? are
scalar multiples of the identity, and therefore O(2) is said to act absolutely irreducibly on
this space. Absolute irreducibility has significance in terms of dynamical systems that
will be shown in the next section The last definition of this subsection is perhaps the

most important in the discussion of dynamics.

Defintion 13: The orbit of the action of I" on an element x in V is the set

“ I'x= {y- X l YE F}. The isotropy subgroup of x in V is the set Xx = {Ye r | Y-X= x}.
The fixed-point subspace of a subgroup X of I is the set
Fix(Z) ={x € V| ox=x foreach ce Z}.

Remarks:

(1). The orbit of the action is simply the elements formed by the action of all the group
elements on a particular vector in V;

(2). The isotropy subgroups are the group elements of I" that do not alter (or act trivially
on) a particular vector x in V, and hence it is said that the vector x contains the
symmetry described by the isotropy subgroup;

(3). The fixed-point subspace is the collection of vectors that are fixed by any given

subgroup of the group I' acting on the vector space V.

Example:
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Consider'the example above of O(2) acting on R* with the same actions defined above.
Choose the vector x = (1,0,0). The orbit of this vector is computed by applying all
elements of the group O(2) on the vector. In this case, fhis is fairly simple since the flip
element acts trivially on this vector while the rotation element sends this vector to any
arbitrary position in the (x,y)-plane. Thus, the orbit is the subspace V, defined above.
Now choose the vector x = (0,0,1). The isotropy subgroup of this vector is SO(2) since it
acts trivially on the z-axis. Finally, notice that the square of the flip is the identity. Thus,
the flip element is a subgroup of O(2) that we shall denote Z,. The fixed-point subspace
of the subgroup Z, is the x-axis since the flip acts trivially on that direction. The fixed-
point subspace of SO(2) is the subspace V, defined above, i.e., the z-axis since it acts

trivially on that direction.

Again, the purpose of this subsection was to introduce the terminology that is
used in the study of dynamics via the equivariant bifurcation theory. Though this
discussion may be cryptic, the primary point to be made here is that group actions on a
vector space behave similarly to linear transformations acting on a vector space. This is

key to understanding understanding equivariant bifurcation theory, as we will present it.

2.2 Dynamical Systems and Symmetry

Our interest in the following discussion is in nonlinear, vector-valued, evolution

equations of the form
x=f(x,\), xe R", Ae R, f:R"XR > R", (2.1)

where A is a control or bifurcation parameter. In particular, we are interested in the
equilibrium and bounded time-dependent solutions of the vector field f that "pdssesses"
symmetry in some sense. The implications of how symmetry of the vector field affects
the existence of equilibrium solutions is the primary result of equivariant bifurcation
theory. There is some additional terminology required, and again we start with a few

definitions.
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Definition 14: A real-valued function f : V — R, V a vector space, is invariant under the

action of a compact Lie group I' if
f(y-x) = f(x),

for all yin T, x in V. An invariant polynomial is a polynomial with this property. A

function is said to be equivariant under, or to commute with, the action of I'if
fly-x) =y f(x),

forall yin T, and x in V. As a point of terminology, we will say that a vector field

possesses a certain symmetry if it is equivariant under its action.

Example: The simplest example of the two properties in definition 14 is the action of the
reflection group on a function of one real variable, f(x). This group is defined as the set
{1} with the binary operation of standard multiplication of two real numbers. If f{(-x) =
f(x) then the function is invariant under the action of this group and clearly the function is
even. If f(-x) = -f(x), then the function is said to be equivariant under the action, and f is
an odd function. Furthermore, if f is an invariant polynomial under this group action,
then f must have the structure f(x*) while in the equivariant case, it must have the
structure xg(x’) where g is therefore invariant. Thus, the terms invariant and equivariant
have very different implications for the structure of the function f, and therefore the same
holds true for a vector field. We have chosen a polynomial for this example not simply
because it is an obvious choice for the discussion, but also since we will be restricting
ourselves to polynomials throughout this proposal. This restriction does not pose a strong
constraint on our problem since many system models are polynomial in nature, or can be
reduced by a normal form procedure to a polynomial (we refer the reader to [10, 16] for a

discussion of normal form reductions for problems with symmetry).
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From the point of view of dynamical systems, if we consider an equivariant,
vector-valued, polynomial evolution equation of the form given in equation (2.1), then by

applying the action of a compact Lie group I on both sides of the equation we have:
v-x=7-f(x) = f(y-x).

If we evaluate the vector field along an equilibrium solution, X, then y-(X) = 0= f(X),

and the equation above becomes:
0=v-f(x) =f(y-x) = {().

What we see here is that an equivariant vector field of this type automatically gives rise to
an invariant vector-valued function when evaluated along an equilibrium solution. We
may construct all such polynomials that are invariant under the action of a given compact
Lie group by applying their actions on a general representation of a polynomial, and
finding conditions on the coefficients to satisfy the invariance properties. We refer the

reader to [10, pp. 43-5] for examples.

Another consequence of equivariance of a vector field as defined in equation (2.1)
involves the equivariance identity,

fly-x,A) =y-f(x,A). (2.2a)

To discuss linear stability of equilibrium solutions, the Jacobian must be computed.

Therefore, apply the chain rule to both sides of equation (2.2a) to derive the identity:

(df), -y =7-(df),,. (2.2b)

When equation (2.2b) is evaluated along the trivial solution, we see that,
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(df)g, -y ="7-(df),,. (2.2¢)

Thus the Jacobian of an equivariant vector field, when evaluated along a trivial solution
branch, for any value of parameter, must commute with the group action. Therefore, if
the group I" acts absolutely irreducibly on the vector space R", in this case, then this

Jacobian must be a scalar multiple of the identity matrix, or
(df)y, = eV (2.3)

By definition 14 then, we must require that ¢(0) = 0 as well.

We now have enough terminology to present the two major results from
equivariant bifurcation theory that are important for our purpose (both are presented in
[10, p.82 and p. 83, respectively along with associated proofs]). These can be stated as

follows:

Theorem 1: (The Equivariant Branching Lemma). Let I be a compact Lie group.
i. Assume I" acts absolutely irreducibly on the finite-dimensional vector space R";

ii. Let f:R" xR — R" be a I'-equivariant vector field with f(0,A) = 0. By (i), we also

have (df),, = c(A)I, where I is the nxn identity matrix, (df) is the Jacobian matrix with !
the subscripts denoting evaluation of the Jacobian along the vector x = 0 for arbitrary
parameter A. Assume c(0) = 0, the condition for a bifurcation to occur;

iii. Assume c’(0) # 0, the eigenvalue crossing condition; and

iv. Assume dim Fix(Z) = 1 where X c I'is a subgroup.

Then there exists a unique branch of solutions to f(X,A) =0 emanating from (0,A) where

the symmetry of the solutions is at least X.

If the conditions for this theorem are not satisfied, then we may satisfy ourselves with the

following theorem:
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Theorem 2: Let I' be a Lie group acting on the finite dimensional vector space R".
Assume:

a) Fix(I') = {0};

b) XcTisan isotropy subgroup satisfying dim Fix(Z) = 1; and

c) f:R"XR — R" is aT™-equivariant bifurcation problem satisfying

(df)o,o(vo) #0

where v, € Fix(X) is nonzero.

Then there exists a smooth branch of solutions (tv,, A(t)) to the equation f(x,A) = 0.

These two theorems tell us that the trivial solution branches to non-trivial fixed-
point solutions that contain symmetry of a subgroup of the full group of the system
corresponding to one-dimensional fixed-point subspaces. The advantage of theorem 1 is

that it holds simultaneously for all subgroups of this type, whereas for theorem 2 to be
applicable, the nondegeneracy condition (df), ,(v,) # 0 must be shown for each of the

subgroups. The advantage of theorem 2 is that it does not require absolute irreducibility
of the group action on the vector space, thereby removing the constraint on the Jacobian
of the vector field as a scalar multiple of the identity matrix. These two theorems say
nothing about Hopf bifurcations and only deal with fixed-point solutions. Therefore,
separate stability analysis must be performed to determine if any time-dependent
solutions branch from the trivial solution.

These two theorems suggest that, if we know all of the isotropy subgroups of an
absolutely irreducible action, then we know all of the possible equilibrium solutions of
the system and that symmetry-breaking bifurcations connect them together in some
fashion. If the action is not absolutely irreducible, we still know a large subset of the
total number of possible equilibrium solutions by finding these subgroups. Knowing the
solutions alone, however, does not give a complete description of dynamics since
stability analysis determines how these solution classes connect to one another. Thus,

stability analysis is an important component of the overall analysis. To illustrate the
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possible conncections, we order the isotropy subgroups into a lattice structure where each
level of this lattice is defined by the dimension of the corresponding fixed-point subspace
for each subgroup, and the branches are defined by the subgroup structure. This construct
is known as the isotropy subgroup lattice, and we shall see in chapter 4 how to produce
such a lattice in detail for the system at hand. We believe that the tools of equivariant
bifurcation theory can play an important role in our understanding of the nonlinear
dynamics of the weakly coupled identical oscillators. Thus, we proceed in the rest of this

work, based on the following assumption:

Working Hypothesis: If the conditions for theorems 1 or 2 above are satisfied then we
have some knowledge of the dynamics in relation to the isotropy subgroup lattice, but in
the event that these conditions are not met, the lattice is still an important classification

scheme for the dynamics of an equivariant vector field.

On this assumption, we begin our analysis of weakly coupled, forced mechanical

oscillators. We first present the motivating example in the next chapter.
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‘CHAPTER 3
WEAKLY COUPLED MECHANICAL OSCILLATORS

We choose the simplest physical example of nonlinear, coupled mechanical
oscillators to introduce the dynamics of such systems. This example considers each
oscillator to be excited by a sinusoidal force that lies in the plane of the ring containing
the oscillators. The nonlinear oscillators are coupled via linear springs to their nearest
neighbors. Though this example is simple, it contains all the essential features we require
to place the analysis in a physical context. The first section introduces this model and
derives the equations of motion for weakly nonlinear dynamics. An application of the
averaging procedure reduces the equations to an autonomous dynamical system. Since
the system model includes an external force driving the system, the resulting averaged
equations contain the influence of forcing through nonhomogeneous terms. A
modification of this model] is also introduced that results in parametric forcing of each
oscillator. The second section generalizes the equations derived in the example by simply
exploiting the symmetry of such a system, and it is here that the group structure is
discussed in detail. Both parametric and direct forcing are discussed in this context.
Through this approach, we show that the averaged equations of motion derived in section
1 are simply a low order (polynomial) normal form for the general case of cyclically

coupled, and harmonically excited mechanical systems.

3.1 Motivational Example

The system under consideration is taken from [5] where a cyclic system of n
identical particles of mass m attached to ground by nonlinear torsion springs, and
arranged in a ring by nearest-neighbor coupling via weak linear extensional springs, is
considered. As per figure 1, let x, be the transverse displacement of the i" particle,

considered small, and assume the linear coupling spring force to be of the form:
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Figure 1. The nonlinear cyclic system
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f, = ek(x; - x). 3.1

Here, j is (i + 1) or (i - 1) due to the assumption of nearest-neighbor coupling, and €, 0 <€

<< 1, is a small order parameter. The ground spring is assumed to have weak

nonlinearities, and therefore, it exerts a force (providing the equivalent torque) of the

form:

X; X;
T, =T1;-2—+£T2a—4, (3.2)
where a is the radius of the ring geometry, and T, and T, are the linear and cubic torsional
stiffnesses. We also assume weak viscous damping. of the form edx;. Thus, the

equations of motion for the i-th mass particle may be written in the form
" Tl
mX; +a—2xi +sfi(xi_1,xi,xi+,)=0, (3.3)

with

x?

fi(xi_l X xm) = k[(xi - X, ) +(xi - xi+,)] +T, ;%+E)’(i. (3.4)

]
By introducing a new time scale T = ®t, where @ = {T, / maz}A , the equations governing

the response of the complete system may be written in the form,
X7+ x, +(e/m®@*)f, =0, i=1,2,..,n, (3.5)

where prime denotes differentiation with respect to the nondimensional time 1. We
include a weak external forcing function in the system by writing equations (3.5) in a

matrix notation, and applying F** = il"cos Qt to the system, where JI represents the
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amplitude of the forcing while " denotes the spatial distribution, whereby the equations

of motion become:

”

x +x+(e/ma?)(F-F*)=0. - (3.6)

The external forcing is restricted to be in the plane of the ring system.
In order to find periodic solutions for the system of equations (3.6), we apply the
method of averaging with respect to the external forcing frequency, Q= Q/®, by

assuming the response of the system to be of the form:
x= Y AU cofQu+a,), (3.7)
=

where U is simply a column vector of zeros except for a 1 in the j" place, and A, and o,

are the amplitude and phase of the j" oscillator, respectively. Substituting equations (3.7)

into equations (3.6), introducing the notation [I; = U, - HI", which represents the external

forcing on the j" oscillator, perturbing the response frequency away from resonance by
setting Q* = 1—¢gA, and averaging the resulting equations over the period T=21/Q, we

obtain the following averaged equations (see 5] for details):

A;=—edA, sin(o; 0, ) + A sinfog — oy, )] +dA +psina ],
A= —a{—vc{Aj_, cos(aj —OLH)+Aj+l cos(oij —aj,f,)—ZAj] +pA3

—AA -1, cosocj}, _ (3.8)

j = 1,..,n, where the parameters X, d, K P, and A are dimensionless combinations of the

parameters introduced above, and are given by:
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k=k/2m®’Q, d=d/2m®’, ¥, =},;/2ma’Q, p=T,/4mB’Q, A=2/2Q.

Thus, « is a dimensionless stiffness for the coupling springs and is always positive; d is a
dimensionless damping parameter that is positive since the inherent negative sign has
already been taken into account in the equations of motion; K, is the dimensionless
external forcing amplitude on oscillator j; p is the dimensionless cubic nonlinearity in the
ground springs with the property that it is positive when the spring is hardening, whereas
it is negative for a softening spring; and A is the dimensionless detuning frequency with
no sign restriction. Also note that, due to its definition, the detuning A is positive when
the excitation frequency is detuned below the resonance or natural frequency, while it is
negative when the excitation frequency is above the natural value.

At this point, we depart from the discussion in [5] and transform equations (3.8)

into a form more convenient for our subsequent discussion by defining the complex

variables z i = A exp(iocj), j=1,2, .., n. This results in the system of equations:

z}=-dz; - i{[?»— plzjlz}zj +U;+ l((zj+l +zZ, —22}.)}, 3.9

j = 1,..,n, where a prime now denotes differentiation with respect to the rescaled time €.
This system of n equations forms a normal form for the dynamics of n weakly coupled
identical oscillators in 1:1 resonance which are subject to a weak, external, planar, and
resonant harmonic forcing. Notice that the vector field is polynomial, and that the only
off-diagonal components arise due to the coupling. Therefore, in subsequent
development, we refer to the conservative portion of these diagonal terms as the
"uncoupled internal mode model", while the coupling terms will be referred to as the
"coupled vibration model"”. The forcing and damping terms will be referred to as the
"external excitation model" and the "damping model", respectively. When averaging is
applied to the original equations of motion (3.6), the external forcing becomes a

parameter. Note however that it has its own set of initial conditions independent from the
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amplitudes and phases of the oscillators. We quantify this below. The external forcing
parameters W, are shown to be real quantities due to the zero fixed phase in the assumed
form of the external forcing when the averaging takes place. If this fixed phase value is
assumed to be nonzero, the parameters [t, become complex quantities.

In the uncoupled case (x = 0), the system consists of n resonantly forced Duffing

oscillators (Nayfeh and Mook [17]) in 1:1 resonance, and therefore, in the case of
hardening springs (p > 0), we are guaranteed three solutions for each oscillator in a

frequency interval above (A < 0) the resonant frequency. It is well-known (see Nayfeh

and Mook [17]) that for this case, the solution with the largest amplitude is a continuation

of the solution existing below the resonant frequency, while, for damping values
/3 . . .
satisfying d < ( pu’ /2) / , the other two branches of solutions arise via a turning point and

have opposing stability characteristics. Therefore, these three coexisting solutions have
differing stabilities. For the coupled system, equations (3.9), it can be shown [5] that
solutions are asymptotically bounded by a sphere whose size is determined by the
magnitude of the external forcing and the damping present in the system. Also note that,
since each spring-mass system is in external resonance, it must maintain a fixed phase
with respect to external forcing. If the phase of oscillation of each mass is changed, the
forcing phase must also be changed by the same amount.

Parametric Excitation Case. Another example of some interest in this study is
the case of a system with a fixed radial force acting on each oscillator. Since we wish to
perform this analysis with an eye towards turbomachinery applications, the external
forcing acting on each oscillator can be viewed to have multiple components: The
circumferential component used in the above derivation, a radial component, and a
component that acts perpendicular to the plane of the ring. In the present model we have
restricted our discussion to forces confined to the plane of the system. To describe the
radial component of forces acting on the system, we consider the same physical system
where the mass is only allowed to oscillate circumferentially, thereby placing a constraint
on the system. As in the circumferential forcing case, we are considering small amplitude

responses, and thus the component of the radial force in the equations of motion can be
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written as F(t)x, foreachj=1, 2, ..., n. Now, assuming the radial forcing function to be
of the form F(t) = 1, cos(2Q2t), assuming the response in the form of equations (3.7), and
then performing the same averaging procedure, a system of averaged equations similar to
equations (3.8) is obtained. In complex form, as per equations (3.9), this system contains
the term i1z, rather thaﬁ the direct forcing term i, Thus, this forcing, rather than being a
direct forcing, is a parametric forcing, placing the system in parametric resonance with
the ratio of response to fdrcing frequencies of 1:2. If the phase of this parametric forcing
is assumed to be nonzero, then, as in the direct forcing case, the coefficient i becomes a
complex parameter in the normal form equations rather than being a purely real quantity.

In axial flow compressors, the external excitation may have a blade-to-blade
phase difference due to the intake fluid flow encountering bolts or rivets, for example,
placed cyclically around the chamber. The forcing in this case would be of equal
magnitude and frequency, as per our model, but the phase would be distributed in a cyclic
manner. This effect in the turbomachinery literature is known as “engine order
excitation”, and we will see in chapter 4 below that this is a generic effect in cyclic
systems of the type considered here.

We now discuss the symmetry structure of our system in detail using this
motivational example, and generalize the system in equations (3.9) leaving the system

model as general as possible.




28

3.2 Symmetry, Invariant Polynomials and Modeling

In this subsection, we wish to generalize the model in the above motivational
example by considering polynomial functions that possess the symmetry of the system
under investigation above. We will consider each of the components of the system model
in turn, that is the “uncoupled internal mode model”, the “damping model”, the “coupling
model”, and the “forcing model”. A detailed discussion of the symmetries and
corresponding groups will be given to derive these models, and this will naturally lead us
into the discussion of the isotropy subgroup lattice in chapter 4. We begin with the

uncoupled internal mode and damping models.

3.2.1 Uncoupled Internal Mode and Damping Models
The group of interest at this point is the special orthogonal group SO(2) with the

usual defintion:
S0(2)=(Pe GL(n): P'P=I,detP=1). (3.10)

Since the free vibration model form we wish to pursue contains only a single degree-of-
freedom, we need only discuss the 2x2 matrices in GL(2) that satisfy this definition. For
the planar system, we may choose a complex variable representation by rewriting the two
real variables (amplitude and phase) into a single complex variable resulting in the

following representation:
SO(2) =(e®: 8e Rmod2r). (3.11)

In this representation, the group corresponds to phase translations of a complex quantity,
z, by the amount 8. In the mathematics literature, the group SO(2) written in this form is
sometimes denoted T' and we will refer to it in this wayv. It can be shown by a direct

calculation, as per Golubitsky et al. [10], that all T'-invariant polynomials are given by:
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h(z,7) = =i[p(|2’)z + iq(12")2]. (3.12)

Comparing this equation with equations (3.9) shows that the damping model is given by
the polynomial q, while the uncoupled internal mode model is contained in the
polynomial p. As seen above, the presence of damping guarantees bounded motions for
the system and, therefore, we require the function q to be negative definite to satisfy this
criterion. Without the démping polynomial, the symmetry of this component of the
system would be O(2) (see [10]), and would complicate the discussion below in chapter
4. Note also that in physically realistic situations, all sub-structures contain some
damping no matter how small it may be. Thus, we exclude the O(2) case from our
consideration. We wish to couple this T' system to itself n times with a coupling model

that also satisfies the conditions of being a T'-invariant polynomial.

3.2.2 Coupling Model

Again, we wish to choose the simplest form for this coupling, and, thus we
assume nearest-neighbor coupling as given in equation (3.9) and figure 1. The resulting
system now has the symmetry of an n-gon, the strength of each coupling being equal. The
coupling itself can be elastic or dissipative as long as it is nearest-neighbor and the
coupling strength is equal. In the present study, we assume elastic coupling as shown in
equations (3.9). If the coupling also contains a dissipative element, the coupling constant
K would be replaced with ix.

The symmetry group that describes the symmetry of an n-gon is called the

dihedral group, denoted by D, and has the definition:
D, = ((0',1():0'“ =%’ =1,0x0= K). - (3.13)
This group consists of two elements with slightly different properties that when combined

together as maps, generate all the elements of the set. We will refer to such elements as

generators since they generate all elements of the group. Another example of generators
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are the rotation and flip elements of the group O(2) discussed earlier. These generators
are 0, a cyclic group element, and x, a flip element, and we discuss each in turn. The
discussion given here is based largely on [14] where the authors have used the same
group actions and representations for their discussion, but we include a few minor
corrections. |

A cyclic group is a single element group that consists of a map that has the
property, as stated in equation (3.13), that n multiplications of this element results in the
identity. The action of this generator on a set of n elements is as a shift operator, that is,

given a set of elements {z, z,, ..., z } the action is given by:
c{z,,zz,...,zn_l,zn}={zn,zl,zz,...,zn_l}, (3.149)

which is just a cyclic shift of n elements. The representation of this element is a matrix
with the property that it shifts the elements of n-vectors in this same cyclic manner.
Therefore, since we are considering left multiplication for our matrix representation, the
matrix representation for the cyclic shift element is an nxn matrix with the subdiagonal
populated with one's, the (1,n) element of the matrix being unity, and the rest of the
entries zero. Note that, if we had right multiplication as our binary operation, this
representation would be to shift the columns in this manner. It is an easy matter to show
that this generator forms a group unto itself, and to help understand the isotropy subgroup
table that we will show in the next section, we state the following theorem, without proof,
that shows some essential properties of these single element, cyclic groups (see [18, pp.

105-6] for the proof).

Theorem 3: Let G={ 616" =1 }, the cyclic group of order k.
i. Let H be a subgroup of G. Then H is a cyclic group with generator x = ¢",

where m is the least positive power of ¢ which lies in H, orelse H= {1}. Ifk
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" is finite then m divides k and the order of H is k/m. If the order of G is
infinite then H is infinite or H= {1}.
ii. Conversely, if m is any positive integer dividing k, then the set S generated by

the element x as in (i) is of order k/m. Consequently there is a cyclic

subgroup of order q for any q that divides k.

iii. The number of distinct subgroups of G is the same as the number of distinct

divisors of k for finite k.

iv. There is at most one subgroup of G of any given order for G finite.

This theorem essentially states that if we can find all binary factorizations of the cycle
order n, then we know all the subgroups that exist.

The other generator for the dihedral group is the flip operation, k. The action of

the flip on a vector in " is chosen to be:

K{ZI’ZZ’Z3""’Zn-I’Zn} = {(Zl)(zz’zn)(ZS’Zn-l)' . '(Z[(n+l)/2]’zn-((n+l)/2])}’
where the square bracket notation [m/2] denotes the integer part of m/2, and the curved
braces denote the action of interchanging the two elements enclosed. For this action, if n

is even, then the first and (n+2)/2 element are fixed by the flip while if n is odd then only

the first element is fixed. For example, for five elements, the action of k is givgn by,
k{z,z,2,2,2}=1{z,2,2,2,1z,),
while for six elements the action is
x{z,z, z,z,z, gﬁ} = {z_,, Z, ZS? 2y 2y, Z, ).
Thus, the representation should be constructed so as to fix the first row of a matrix and

produce this sort of rearrangement among the other rows. Thus, the representation for the

flip x has the structure:
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Note that the square of this matrix is the n dimensional identity matrix. The choice of
which element is the first element of the set {z,,z,,...,z }, that remains fixed, is arbitrary
and may be chosen for convenience, but the relative order of the elements must be
respected. This completes the discussion of the individual symmetries and their
associated groups that are present in the system. Now we wish to combine them into one

action, and give the corresponding representation.

Again, taking from [14], the action we choose is:
(p,eie)(zj) = eiezp(j), j=1,..,n,0¢€ [0,2n).

Thus, each element z,, j = 1,...,n, is reordered by some element of the dihedral group, p,
and, simultaneously, its phase is translated by the amount 6. Hence, the matrix
representation of the action of the T' group is that of a diagonal matrix with the nonzero
elements given by €”, thereby, translating the phase of all n elements by the same amount.
Thus, the symmetry group of the system may be written as D_ X T as the two group

operations are independent but act simultaneously. The representation then, is:

Yz) > e®I Az, ye D, xT', ze C", (3.16)
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where A is the representation of D,. In light of this group construct then, the system of

equations we wish to study is of the form:
A =—i{p(zj2j)zj+iq(zj2j)zj+h(zj+] —-Z;,Z;, —zj)}, | (3.17)

j = 1,..,n. The polynomials p, g, and h will be assumed to have real coefficients.
Physically, having complex coefficients in the polynomials p and q would correspond to
a delay in the dynamics of the system due to the application of some excitation process,
while, as discussed above, complex coefficients in the polynomial h correspond to
dissipative elements in the coupling. These are unnecessary complications. Again, we
assume that the coupling strength of the oscillators is equal in both directions. At this
point, this set of equations does not explicitly contain the effect of the external excitation,

to which we now turn.

3.2.3 External Excitation Model

First, consider parametric forcing. In this case, the forcing enters as a
multiplicative factor to each of the scalars z, Jj=1,2, ..., n. Furthermore, recall that in the
motivational example, it came about as the first term in the Taylor expansion of the sine
trigonometric function. Therefore, if more terms are kept in this expansion, an odd order
polynomial would result in the averaged equations, resulting in the same form as for the
uncoupled internal mode model polynomial p. Thus, in this case, we assume that
we have another polynomial of this type describing the parametric forcing with the
appropriate multiplicative parameters being real for each term. In the remainder of this
section, we will concentrate on the direct forcing case.

To maintain the symmetry of the system, we assume that the external excitation
model possesses the same symmetry (T') as the uncoupled internal mode model, and it
acts identically on each oscillator so as to respect the D XT' group structure of the system.
Therefore, the polynomial representing the forcing must have the same form as given in
equation (3.12). The damping component of this polynomial does not correspond to a

physical excitation process of interest and is dropped from the model. We need to
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augment the space C" of the vector field for the oscillators to include the variables
defining the external excitation. Thus, we have the following structure: (z, z,, ..., Z,; L,
W, --..14,), where the z's contain information with respect to the oscillators’ response to the
external forcings p‘s. We may finally rewrite the model representing the dynamics of the

system (3.17) as:

zj= _i{P(ijj )Zj + f(ujﬁ,-)uj + iq(zj'z'j)zj + h(zjﬂ TZpZiy Zj)}’ (3.18)

¢

J=1,2,..., n, and augment it with the vector field description of the forcing, given by:
W =w(w,), (3.19)

j=L,..,n. Thus, we have a vector space of dimension 2n with a vector field structure that
is a direct sum of equations (3.18) and (3.19). To simplify this model as much as
possible, and to still maintain the spirit of the motivating example given above, we
assume that w = 0 for all j, thereby making the direct forcing a parameter in the system
(3.18). We wish to study the system near resonance since the largest as well as the most
interesting response of structures arises for this condition. We can also visualize the
situation as if the forcing is periodic with a Fourier spectrum such that one of the Fourier
frequencies is in resonance with the natural frequency. The group representation for this

augmented space is then given by the following structure:
T . T
vz P e*(L,)A®A)zpY , ye D, xT', ze €, pe €, (3.20)

where A is the representation of the portion of y corresponding to D,,, the notation &
denotes direct sum, and superscript T represents the transpose operation. Thus, the phase
translation corresponding to the T' symmetry group acts equally on the z's and j's, as

does the representation of the dihedral group action. An external excitation component
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giving rise to direct forcing, assures, as per the above discussion in the motivational
example, that the trivial solution (i.e. (z,, z,, ..., z,) = (0, 0, ...,0)) for the oscillator’s
response does not exist, while, coupled with damping, an attracting periodic motion is
guaranteed.

With this formulation of the system equations, we move on to study the dynamics
of the system by first discussing the isotropy subgroup lattice. For the augmented
structure of the vector field, it is appropriate to discuss equilibrium solutions
corresponding to the isotropy subgroups by stating them for the augmented vector (z,, z,,
-0 Zo3 Wy My, --M,). However, the external excitation terms are taken as parameters due to
the averaging of an assumed harmonic excitation and therefore, their equilibrium
solutions come directly from the spans of the fixed-point subspace spans. Thus, stating
these solutions is a trivial matter and we restrict our attention to the oscillator responses.
Physically, in the case of steady-state response of forced oscillators, the forcing phase
determines the oscillator response phase, though in damped systems there may be a fixed
phase lag between the oscillator response and the forcing. As discussed above, the phase
relationships among the oscillator responses is the same as that for the forcing phases,
and the augmented vector field construct presented here maintains this (physical)

relationship.
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CHAPTER 4
THE ISOTROPY SUBGROUP LATTICE AND DYNAMICS

The isotropy subgroup lattice will be used to obtain information on fixed-point
solutions of the averagéd system of equations, that then correspond to periodic motions in
the original system. Thus, we first discuss in detail the structure of the isotropy subgroup
lattice, its significance, and how to construct it for a given number of oscillators. The
second section is devoted to explicit construction of the solution classes corresponding to
the subgroups contained in the lattice, and the third section discusses briefly the
difference between linear and nonlinear coupled oscillators.

As noted above, Ashwin and Swift [14] have used the same group action and
representation for a D XT'-equivariant system with weak coupling. They derive the
isotropy subgroup lattice that we use here, to classify the motions corresponding to each
subgroup in terms of our system of equations. However, their system does not include
damping or forcing, and therefore they only consider frequency equations. Furthermore,
the amplitudes are ignored, and thus the existence of multiple solutions for each
frequency value in the uncoupled case for each oscillator is not considered. We use the
motivational example of the previous chapter to interpret the dynamics in terms of this
mechanical system.

From [14], we have the following theorem, stated without proof:

Theorem 4: The isotropy subgroups of D, x T' and their fixed-point subspaces are
defined in table 1, where mk = n runs through all binary factorizations of n. The list

constructed in this way has no duplications.

Immediately, we see in this theorem the importance of the binary factorizationsbof the
cyclic group order shown in theorem 3. The problem with using this theorem, for our
analysis is that the proof used in [14] relies on some of the structure they have imposed
on their system that does not exist in ours. We believe that their proof can be modified

appropriately, and the theorem suitably restated, so that it is applicable to our system, at
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Table 1: The isotropy subgroups of D, x T'. There are m blocks of k adjacent
oscillators in the fixed-point spaces, where n = mk. As always, ® = exp(i2n/n).

Isotropy Subgroup dim(fix(%)) fix(2)
k=1
D 1 (a,...,a)
D (+-), for n even 1 (a, -a, a,...,-a)
Z(p),pe {1,..[(n-1)2]} 1 (a, 0'a, ®™a,..., ©"2)
k=2
D_,(+-), forn =0 mod 4 1 (a, a, -a, -a,...,a, a, -a, -a)
D,_,(x) 2 (a,b,a,b,...,a,b)
Z,p),pe {1,..[n4]} 2 (a, b, ®”a, @”b,..., ®”a, ©”b)
kodd, k#1
D_ (k+1)/2 (a,b,c,c,b,...,a,b,c c,b)
D_(+-), for m even (k+1)/2 (a, b, c,c,b,..., -3, -b, -c, -c, -b)
Z k (a,b,c,d,e,...,a,b,c,de)
Z.(),pe (1,..,[m2]} k (a,b,c,d, e, ©"a, ®”,..., ™"d,
. CO'SPC)
keven, k#2
D_(x) k/2+1 (a,b,c,d,c,b,...,a,b,c,d,c, b)
D_(xo) k/2 (a,b,c,c,b,a,.,ab,c,c,b,a)
D (--) k/2 (a,b,c,-c,-b, -a,...,a,b,c,-c, -
b, -a)
D_(+-), for m even k/2 (a,b,c,c,b,a,.., -a,-b, -c, -c, -
‘ b, -a)
Z k (a,b,c,d,...,a,b,c,d)
Z (), pe {1,..[m?2]} k (a, b, c,d, ®"a, @",..., 0%, @
4pd)

least in the direct forcing case. On this assumption, this chapter begins by describing the

notation of the table, and how the table is used to form the lattice.
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4.1 The Lattice

If we call the shift element of the dihedral group o, and the flip element K, then, as

hown in [14], we have the following definitions of the various subgroups shown in the

table:
D, (1) = ({c*,x}). | 4.1)
D, (ko) = ({c*,xa}), 4.2)
Z, =({c*}). 4.3)
D_(+-)= <{(Gk_1}(,l),(l(0',—-1)}>, for m even, (4.4)
D _(--)= <{(G““K,—l),(xc,—1)}> , for k even, 4.5)
Zm(p) = <{((>'k @™ )}> where p is an element of the set {1,...,[m/2]}, (4.6)

where mk = n, and as above, the bracket notation [m/2] denotes the integer portion of the
division, and the element listed as @ represents the quantity e”, the phase translation
element. In this notation, each element or elements grouped by the curved braces are
generators for the subgroup. If there is more than one element listed as a generator, such
as (0°'k,-1), then this is a generator of two elements where the first element 6"« is an
element of the group D , while €” = -1 is an element of the group T'. Groups (4.4-6) are
formed by these two element generators, and in the mathematics literature, these are
referred to as twisted subgroups. Groups (4.1-3) are therefore known as untwisted
subgroups. Note that when k is odd for the subgroup in equation (4.2) it can be written as
D,_, since the additional flip action is trivial in that case. We now describe each of these
classes of subgroups.

For the untwisted subgroups, equations (4. 1-3), we see the property of binary
factorization of an integer giving rise to subgroups, as shown in theorem 3, becoming
apparent. The group given in equation (4.1) is the same as the definition of the dihedral

group except that instead of single elements being identical as in the D, case, blocks of k
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elements are identical. The same is true for the subgroup in equation (4.2) except that, as

seen in the column listing the fixed-point subspace span in the table, the internal structure

of each block is different. The third subgroup, in equation (4.3), has no flip action as part

of its generator list and therefore is a pure cyclic shift of order m. Thus, we again have k

identical blocks of m oscillators with a different internal structure as shown in the table.

These untwisted subgroups form a class of motions such that all blocks oscillate in-phase

with one another.

For the twisted subgroups, we again have m identical blocks of k oscillators,
except that now we see the evidence of engine order excitation. In the case of equations
(4.4) and (4.5) we have identical blocks but each block oscillates 180 degrees out of
phase with its neighboring blocks, and each equation gives slightly different internal
structure of each block. The third subgroup in equation (4.6) contains all the engine order
excitations possible in the oscillator assembly. Thus, there are m blocks of k identical
oscillators such that each block is excited out of phase by an integer multiple of the
fundamental angular displacement around the ring, depending on the ordering present in
the external forcing.

Thus we have three basic classes of dynamics based on these subgroups:

1. m blocks of k identical oscillators (or under particular combinations of the binary
factorization of n, (k+1)/2, k/2 + 1, or k/2 oscillators) oscillating in phase, that are
described by the untwisted subgroups. We will refer to this type of motion as "in-
phase oscillations", denoted IP;

2. m blocks of k identical oscillators (and variations on the value k as per the IP case
above, due to particular combinations of the binary factorization) oscillating 180
degrees out of phase, that are described by the twisted subgroups shown in equations
(4.4) and (4.5). We will refer to this type of motion as "standing waves" and denote it
SW; and '

3. Engine order excitation of m blocks of k identical oscillators described by the twisted
subgroup defined in equation (4.6). We will refer to this type of motion as "traveling

waves” and denote it by TW. We will denote the excitation responsible for these

motions as EO excitation.
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. To describe the isotropy subgroup lattice structure, we must define how the levels
and branches are determined. The levels of the lattice are determined by the dimension of
the corresponding fixed-point subspace, and from the table we see that this value depends
on the number k in the binary factorization n = mk. Since the highest level is for the one
dimensional subspace, we start with m = n and k = 1 for all cases, and end with m = 1 and
k =n. The simplest example is that of n = 2. In this case, the binary factorizations, with

the lattice structure in mind, is:
2=02)1)=(1)2),

and the lattice is shown in figure 2a. Thus, we have m =2 and k = 1 which corresponds
to the first subgroup listed in the table, D,, and for m = 1 and k = 2, we have the fourth
entry D (+-), and the sixth Z,(1). Both of the snbgroups D,, D, have the same dimension
of unity for the fixed-point subspace. Therefore, both of these subgroups form the top
level of the lattice and no connection exists between them as one is not a subgroup of the
other. In all cases, the last subgroup to be listed in the lattice is the solution where all
oscillators have differing solution values which we will refer to as the trivial subgroup
and denote by 1. This subgroup is isomorphic to the subgroups Z, and Z,(1) listed in the
table. Thus for the n = 2 case we see that we have the IP solution and the SW motion
connecting to the trivial subgroup where both oscillators have differing solutions.

Since 2 is the only even prime number, the next simplest example is that of a
prime number not equal to 2. In this case, let n be prime, then we have the following

binary factorization:
n = (n)(1) = (1)(n).

We have the corresponding lattice shown in figure 2b. In this case the lattice is a single
branch ending in the identity since Z, and Z (1) are the same as the trivial subgroup, 1, as

mentioned above. Thus, there are only three possible solutions, all of which fall into the
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Figure 2: Isotropy subgroup lattices for: (a). n=2; (b). n prime, not equal to 2; and
(c). n=6.
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IP class of motions. The first solution is where all oscillators have identical motions that
connects to the case of (n + 1)/2 oscillators having differing solutions and these solutions
are placed around the polygon such that they are mirrored across the symmetry axis.
Finally, this set of solutions connects to the trivial case where all oscillators have
differing solutions. |

Consider n = 6 as our last example. In this case we have the binary factorization:
6 = (6)(1) = 3)(2) = (2)(3) = (1)(6)-

We match all possible subgroups that correspond to each factorization. The following is
a list of the possible subgroups that arise for each factorization, and their corresponding
fixed-point subspace dimension:
e (6)(1): m=6,k=1-D,D/(+),Z[1),Z,(2) all with dimension 1,
e (3)(2): m=3,k=2-D,(x), Z,(1) both with dimensions equal to 2;
e (2)3): m=2,k=3-D,, D,(+-),Z, Z,(1) with dimensions 2, 2, 3, 3 respectively; and
o (1)(6): m; 1,k=6-D,(x), D,(x0), D,(--), Z,, Z,(1) with dimensions 4, 3, 3,6, 6
respectively.
The lattice is given in figure 2c. The branches are constructed by determining which
elements of the level below are subgroups of the elements listed above them. In order to
accomplish this task, we need to use the abstract definition of groups, the definition of the
group action, and the definition of the properties of the generators that form the dihedral
group. Our approach will not be mathematically elegant but more of a "brute force"
approach, but it is proper for a derivation of subgroups. We begin by defining the groups
in figure 2c, and deriving a multiplication table for many of these groups. Recall that, for
the n = 6 case, o° is the identity shift since it corresponds to shifting the six oscillators by
one place six times. Thus, we write ¢° = 1. Furthermore, note that the subgroup we have
denoted 1 is a one element set containing only the identity element. This identity element
has two forms depending on whether the subgroup under consideration is twisted or
untwisted, as we shall see.

The first group is D,(x) with the definition, from equation (4.1),




43

Table 2: Multiplication table for the D () group as defined in the text.

1 X

1 1 K

k| x 1
D,() =({c*,}). @.7)

Since the shift operation is the identity, which must be an element of every group, it does
not form a generator for this subgroup. Note further that ¥’ = 1, and thus the elements
that determine this subgroup are simply the identity and the flip element, or we may write

this subgroup in terms of its set of elements as,
D,(x) ={Lx}.

We now introduce the multiplication table for this subgroup. A multiplication table is a
table showing how, for finite order groups, the action of the various elements that
comprise the set of the subgroup give rise to the other elements. Table 2 shows the
multiplication table for this group. The left side and top of the table contain the listing of
all the elements of the set. The entries in the table itself are formed by applying the
elements on the left side to the top elements by left "multiplication” via the group
operation.

The next group of interest is D,(x0) that is comprised of the single generator
D, (xo) = {{xa}). (48)

Since this group contains only single element generator we need to multiply this

generator to itself to start the multiplication table:

(x0)(xo) = oko) = (k) =k* = 1.




Note that the first step in this calculation comes from the associativity property of groups
from defintion 7, and the second step comes from the properties defined for the dihedral
group, as given in equation (3.13). Therefore, this group has a four element
multiplication table similar to that of D,(x) above since it consists of the two elements {1,
xo}. Furthermore, note that the action of the flip alone is different from the action of the

flip in conjunction with a shift.

The next group is Z, which is defined by the single generator:
z,=({o’}), 4.9)

and again we have a two element set forming this group since ¢’ = 1. Therefore, we
again have a four element multiplication table as in the two cases above, the elements

being the identity and the generator.

The D ,(--) group has definition:
D,(--) ={{{c'x-1).(xo-1)}), (4.10)

where -1 =€". We wish to simplify the first generator so that it is in the form of the flip
element being first. This is done so that the notation conforms with standard notation and

to the notation we have in the above subgroups:
0’K=0"KG" =KO.

Thus, we see that for the definition of this subgroup, both generators are the same

element, and therefore we again have a single generator forming this group. Also,

(xo,~1)(xo-1) =(1,1),
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: Table 3: Multiplication table f or the D,(K) group as defined in the text.

1 ¢ ¢ x x¢ xo

1|1 |6 |o" ] x | x| ko'

olo |6 |1 |ko'| x | xo
lo |1 | [xe]|xo

K
2 4 1 (52 0_4

ko' | xo’ [ko'| x | © 1 o
1

xo'lxo'| ¥k |[vo | &/ | &

A
A
A
Q
A
Q

~
~
£

£
(N

where (1,1) is the identity element for the twisted subgroups. This calculation comes
from the above calculation in the D,(x0), case and from the application of the phase
translation of & twice resulting in a total phase shift of 21 which of course is trivial on a

complex quantity z. Therefore, the set of elements making up this group consists of just
the identity and the generator, resulting, again, in a four entry multiplication table.

The next twisted subgroup of interest is Z,(1) with definition:
z,0 = ({@.0)}). (4.11)

We simplify the generator for this group by noting that:
3
@’ =[exp(i2n/6)] =-1,

and therefore in this binary factorization, this TW type motion has the same form as the
SW motions since the generator is of the form (0’3 — l). And again, the multiplication
table for this subgroup is a four entry table as for the groups above. This complétes the
definitions of the levels of the lattice corresponding to fixed-point subspace dimensions
of 6,4 and 3, and we now move to the lower dimensions to complete the characterization
of the lattice groups, and to the complete discussion of how the subgroups connect to one

another.
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: The group D,(x) has definition:
D,(0) = ({c?,}). 4.12)

In this case we have an untwisted group generated by two elements with

multiplication table given in table 3. Thus, the set of elements comprising this gfoup 18:
D,(x¥) ={1,6%,6*,x,x0%,xc* }.

At this point, the construction of a multiplication table should be clear, and we simply
show them in tables 4 for the remaining groups except for the D,, D(+-), Z,(2), and Z(1)
groups. For the last four gruops, the multiplication tables are quite large and we have
only listed their elements. From these multiplication tables, we can explicitly determine

the subgroup structure.

By comparing the list of group elements in each case, we see that the D (x) is a
subgroup of D,(x), which in turn is a subgroup of not only D,, but also D (+-) since the
action of (¢7,1) is the same as ¢” alone. Thus, some of the untwisted subgroups are
subgroups of the twisted subgroups. The D (k) group is a subgroup of D,, which again

is a subgroup of both D, and D (+-). The D,(--) subgroup is a subgroup only of the




Table 4 Multiplication tables for: (a). D,; (b). Z,(1); and (c). D,(+-); (d). List of elements
for the D,, D(+-), Z,(1), Z,(2) groups. The multiplication tables for these are easily
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derived but are not given due to their size

1 o KO KO

1{1 |J | ko |xc

olo |1 | ko' | xo

ko] xo [xo' | 1 G

ko'l ko' | ko | o | 1
(a)

(L,H (o) (o)

(a,nl @, [@¢e) | (')
- @0 |(¢0) [(¢) | (1)
(c'0)| (¢’ w) | (1,1) | (&)
(b)
(L1) (x0,-1) (ko' 1) (o’-1)
(L] (LD | (xo-1) | (x6*1) | (6°-1)
(xko,-1|(xo,-1) | (L,1) -1 | (xc'1)
xo', D (xc*,1) | (-1 (L,1) (xG,-1)
@’ -] | x6'1) | (xo,-1) (1,1
©

D, = {1,0,06°,0°,6",6° x0,x0’ ko’ k0" k0’ },

D(+) = {(1,1),(c,1),(c",1),(c°,1),(c*,1),(c6°,1),(x0,1),(kc’,1),(kc",1),(x6",1),(x6°, 1)
(1,-1),(0,-1),(0",-1),(6°,-1),(6",-1),(0°,-1),(K0,-1),(KG",- 1),(xG’,- 1),(x6%,-1),(k0’,- 1)},

Zs( 1 ) = { ( 1 ’ 1 )’(G’m)a(qz,mz)a(csa'1)’(64,'(0),(0-59'0)2) } ’
Z(2) = {(1,1),(0,0),(0",0,(c", 1),(¢",0"),(c",»'}.

(d
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D,(+-) subgroup, which is only a subgroup of D,(+-). The group Z, is a subgroup of both
the Z,(2) and D,, but not of Z(1). Lastly, Z,(1) and Z,(1) are, unsurprisingly, subgroups
of Z(1) but only Z,(1) is a subgroup of D,(+-). This is the "brute force" method to
construct the subgroup structure, but it suffices for our discussion. Another obvious way
to identify a subgroup is if a one element generator group is formed by taking the
generator from a two generator group. Along this line, there are far more elegant ways to
determine subgroups, but they are not necessary for this discussion and are out of the
scope of the present proposal. We refer the interested reader to further pursue these and
other topics in group theory independently.

It is important to reiterate here that the connections shown in the lattice diagram
in figure 2c are formed purely from the subgroup structure. No implication to dynamics
can be assigned or attributed at this point. If theorem 1 holds, then there are implications
to dynamics, at least for the first level of the lattice in that the trivial solution will branch
to that level. However, it has been shown by Golubitsky et al. [10], Fields and
Richardson [19], and Lauterbach [20] that subsequent bifurcations need not necessarily
branch to the next higher dimension fixed-point subspace isotropy subgoups. Thus, in

terms of dynamics at this point, these branches are conjectural in nature.

4.2 Dynamics

This section is devoted to explicitly deriving the equations whose solutions must
be computed for each subgroup shown in table 1 for both the direct and parametric
forcing cases. We wish to consider the system of equations shown in equation (3.18) but
in a somewhat simplified form, so that the pertinent issues of the analysis are not clouded
by computational difficulty. In this light, we consider a linear cbupling polynomial, h,
and a linear forcing polynomial, f = 1, since the forcing variable is simply a parameter
and we may vary its amplitude and phase as we see fit. Therefore, the systems for

investigation of solutions are:

Direct Forcing: z = —i{p(zjij)zj + iq(zjij)zj +uj+l<(zj+l +Z;, - 22j)}, (4.13a)
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Parametric Forcing: z; = —i{p(zjij)zj +iq(zj'z“j)zj +ujzj+x(zj+, +z, ~22j)}, (4.13b)

J = 1,...,n, where, in keeping with standard notation in mechanics and the motivational
example, the linear constant in the coupling term has been called x to represent a spring
stiffness as the coupling is assumed elastic. We see that these systems of equations have
the same structure as that shown in the motivational example, equation (3.9) except that
we have not specified a definite form for the free vibration function, p, nor the damping
function q, and in the subsequent discussion they will not be specified. For a simpler
physical interpretation, we transform these systems of equations (4.13) into the

corresponding amplitude and phase representation, z = rexp(i6)), j = L,...,n:

= —{—q(rjz)rj +lu| sin(f)j - (pj) + !({rj+l sin(()j —GH) +r1;, sin(E)j -0, )]}, .(4.14a)
0] = { ( )r +Iulcos(6 (pJ) K{rj+1 cos(Gj—BM)+rj_, cos(Gj—Gj_l)—er]}, (4.14b)

{ r, —h.llsm (pJ I, +K{ r;,, sin 9 -0, )+rj_ sm(e -0, ,)]}, (4.14c)

r,0; = {p(rf)rj+|plcos((pj)rj+1c{rmcos(6j-6j+l)+rj_l cos(Gj—Bj_l)—2rj]}, (4.14d)

j=1,...,n, and where we have written i = lp.|e"°" . Note that in the above, the first two

equations are for the direct forcing case and the last two equations correspond to the
parametric forcing case. Thus, in the discussion to follqw, the labels (4.*a,b) will be for
the direct forcing case while the labels (4.*c,d) will refer to the parametric forcing case.
To classify the dynamics according to the lattice, notice that the first three entries of table
1 fall into each of the three classes of motions. We will, therefore, start with these three

before we classify the solutions for the general cases, as defined in equations (4.1-6).
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D_: Note that the dimension of the fixed-point subspace is always unity for this subgroup,

and therefore there is only one independent solution. The solutions for this IP motion are

given by,
q(r?)r —|u|sin(6-¢) = 0, (4.15a)
p(rz)r+lu|cos(9—(p)=0, (4.15b)
q(r) +[usin(g) =0, (4.15¢)
p(r?) +lu|cos((p) =0, (4.15d)

for each oscillator. For the case of direct forcing, equations (4.15a,b), we see that the
function q tends to make the response of the oscillator lag the forcing applied because of
q being negative definite. This is a generic effect in vibratory systems with damping, and
- we shall see it throughout the subsequent fixed-point subspace solutions. The coupling
has no effect on the motion, in effect creating the situation of n identical oscillators that

are uncoupled. Furthermore, equations (4.15a,b) may be rearranged to produce:

—tan(6 - ¢) = q(r?)/p(r?). (4.162)

[p(e2)e]" +[a(e2)]" - " =o. (4.16)

The solution of the, in general, nonlinear equation (4.16b) gives the equilibrium
amplitude values. For example, for the motivational example in the previous chapter, we
have a Duffing equation for each oscillator. Therefore, for a given set of parameter
values (damping, forcing amplitude and phase, strength of nonlinearity and detuning
frequency), we may have more than one simultaneous solution for this case, poSsibly with
differing stability characteristics. Note that, by choosing one of these three solutions for
one oscillator requires that every oscillator is responding via the same solution. We will

comment on this further below.
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. For the parametric forcing case, equations (4.15c,d), see that the phase of the
forcing determines the ratio q(r*)/p(r*), and thus only the relative definiteness of these
functions is determined in this case. On the other hand; given the definiteness of the
function p, the quadrants within which the forcing phase must lie to allow for solutions in

this class can be determined. We will see this to be a generic effect in the parametric

case.

D (+-): This is the case of response with equal amplitudes, but each oscillator is 180
degrees out of phase with its nearest neighbor, and hence is one of the SW motions. We
arbitrarily assign the phase value of 0 to the odd numbered oscillators and the phase value
of 017 to the even numbered oscillators. In fact, the manner in which the phase
differences are arranged is inconsequential to the equilibrium solutions. Note from the
table that this motion orily corresponds to an even number of oscillators. The equilibrium

solutions are then determined by the following equations:

q(r*)r-|u/sin(6- @) =0, (4.17a)
p(r?)r+|u|cos(6— @) —4xr = 0. (4.17b)
q(r?) +|ulsin(e) =0, (4.17¢)
p(r?) +|u] cos(g) - 4x=0, 4.17d)

Again, as in the D, case for direct forcing, we see that the phase of the oscillators must
lag that of the forcing. We see, in equation (4.17b), that the coupling affects the value of
the amplitude in comparison to the D, case above. In fact, the coupling now decreases
the stiffness component of the free vibration model. Performing the same simplifications,

as for the D, case above, for equations (4.17a,b), we find:

—tan(6-¢) =q(r2)/[p(r2)—4lc], (4.18a)

[p(rz)r——41q]2+[q(r2)r]2-—|pl2 =0. (4.18b)
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In this.case, we may see some solutions that were existent in the D, case disappear (or
appear if they were not possible in the D, case) depending on the value of the coupling in

comparison to the IP situation above. Thus, we see that there can be a significant impact

of the coupling stiffness K on the amplitude of the response of the oscillators in the SW

motion class.

For the parametric forcing case, a discussion similar to that for the D_ case holds.

Z@p.pe {1...[(n-1)/2]}: Asshown above, this mode is due to EO excitation where the

phases are translated by the amount 2rs/n between adjacent oscillators, and form what we

are referring to as TW motions. The equilibrium solutions are given by:

 qr?)r—ufsin(6-g) =0, (4.19)
p(r?)r +|u|cos(8 —¢) — 2xr[ 1~ cos(2ms/n)] = 0. (4.19b)
q(r?) +[ulsin(¢) =0, (4.19¢)

p(r?) + |/ cos(g) — 21 1 - cos(2ms/n)] = 0. (4.19d)

We have chosen to write the oscillator phase by 6, = 9+( j- 1)211:5/ n and similarly for the

forcing phase ¢. Thus, the same discussion holds for this motion as in the case above,
including a modification in the amplitude value due to the coupling. Note that when s/n

= 1/2, this case reduces to the D (+-) case for SW motions.

The first three isotropy subgroups listed in the table, that always form the top of
the lattice structure, lie respectively in the IP, SW, and TW motion classes, and therefore
show how the solutions for each class of motion differ from those in the others. The
solutions for each of the remaining subgroups listed in table 1 are blocks of oscillators
with the same structure as shown above for the solutions of the oscillators that are on the
boundaries of each block. The structure of the solutions for the oscillators that are in the

interior of these blocks are then of interest in this classification, and therefore for the
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remains of this subsection, we classify the groups in table 1 into their appropriate mode
class and list their fixed-point solutions. For the higher dimensional fixed-point subspace

cases, a general element in every block will have a solution structure governed by:

0= —q(rjz)rj +|ul sin(ej - (pj) + v{rj+l sin(ej -6, ) +r1p, sin(f)j -6, )] , (4.20a)

0= p(rjz)rj +|1,Lf c,os(ej —(pj) + K{rj+I cos(()j —OjH) +1;, cos(ej -0, ) - 2er, (4.20b)

and we will therefore, only list the solutions in for the interior oscillators of each block
that oscillate according to a fixed-point solution different from these equations.
Furthermore, the fixed-point solutions for the parametric forcing case should be clear at
this time, and since we are only classifying these solutions, we will not present the fixed-

point solutions for this case explicitly.

In-Phase Oscillations (IP): The groups that fall into this category are: D, D (k) fork =
2,D, fork odd # 1, D_(x) and D,_(x0) for k even # 2, and Z_ for all k. The solutions for

the cases exceptional to equations (4.20) are given for each in turn. Note that the D, case

has already been considered above.

D ,(x) for k =2: Since the size of this block of oscillators is two, the equilibrium
solutions for both oscillators in each block is exceptional to equations (4.20), and given

by:

~q(r?)r, +|ufsin(6, - ¢, ) + 2xx, sin(6, - 6,) = 0, (4.21a)

p(r’)r, +|u/cos(6, —,) + 24, cos(6, -8,) -1, = 0,  @21b)

and a similar set of equations for the second oscillator.
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D, fork odd # 1. Here, we have k oscillators forming a block of only (k+1)/2

independent solutions that are placed in a block such that at the half way point through

the block the solutions begin to repeat in opposite order. Each block then has the

structure:
(Zx 1229235+ ey Zikanya o Zikanyfzr Zik-nyj2 0+ -2 23 *Zz)’

with the solutions of the exceptional cases of elements z, and Zy.y2 ElVen by:

~q(x2)r, +|u/sin(6, - ¢,) +2xr, sin(6, -6,) =0, (4.22a)

p(r?)r, +|ufcos(8, @, ) + 2K, cos(6, -6,) - 1,] =0, (4.22b)

(e cwtrn 1i0{8c2 = o) K Si(B1400 ~ B 2)=0,  (4.220)
< A R I (N

-Hc[r(k—l)/l’ cos(e(m)/z _e(k-l)/2) - r(k+l)/2] =0, (4.22d)
These equations are exactly those for the D (K) case listed above in equations (4.21).

D (). k even # 2: Here we have k/2 + 1 independent oscillations arranged such that at
the half way point, the solutions repeat in the opposite order. The exceptional solutions
are for the z, and the z,,,, elements. The z, solutions are given by equations (4.22a,b),

while the z,,, | element solutions are given by equations (4.22c,d) with the appropriate

change in subscripts. Thus, the internal structure changes only slightly between this

subgroup and the previous one in this class of motions.

D (x0). k even # 2: The exceptional elements of solutions are the z, and the z, elements
with the z,, solutions given in equations (4.22c,d) with appropriate changes in subscripts,

and the z, solutions given by equations (4.22a,b).
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Z,: Keep in mind that m and k have no restrictions for this subgroup as this subgroup
exists for even and odd k. The only special structure for this subgroup is the first element
where the solutions are given by equations (4.22a,b), except when m = n which
corresponds to the trivial subgroup with all oscillators having different solutions. In this

case, the structure of equations (4.21a,b) holds for all oscillators.

This completes the classification of solutions for each of the subgroups listed for the IP
solutions. This solution class is made up of blocks of oscillators oscillating in phase with
varying internal equilibrium solution structures in the block itself, and these blocks are
repeated in a cyclic manner around the ring. Note that for the subgroup containing a flip
element K as generator (see equations (4.1-6)), the internal structure of the solutions
repeat themselves in the block while those without this generating element do not.

Again, note that all the subgroups of this class are untwisted.

Standing Wave Oscillations (SW): The groups that fall into this category are: D (+-) for
k=1, D,,(+) for n = 0 mod 4, D_(+-) for m even and k odd not equal to 1, D, (--) fork

even not equal to 2, and D, (+-) for m even and k even not equal to 2. The equilbrium
solutions for each of these subgroups are given in the same manner as in the IP class
above in that only exceptional cases will be shown. Note that only twisted subgroups fall

into this class, and the TW class.

D (+-) fork = 1: Asdiscussed above, there is only one independent solution in this fixed-

point subspace but each adjacent oscillator is phase shifted by 180 degrees. The solutions

are specified by the equations (4.17a,b) above.

D ,(+-) for n = 0 mod 4: There is only one independent solution that it is distributed into

blocks of 2 and each block oscillates 180 degrees out of phase with each adjacent block.
The solutions for this case are given by equations (4.17a,b) above. Clearly, the case of

the number of oscillators being multiples of four is a special case that creates a new
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branch in the lattice. Vakakis [3] discusses some consequences of this where mode
localization in free vibration is discussed, and a preliminary discussion of the forced case

is presented.

D (+-) for m even and k odd not equal to 1: The exceptional solutions for this case come

at the boundaries of each block where the difference in phase is seen, and in the center of
the block where we have equal solutions. Therefore, z, and and Z,,,,, are exceptional.
The solution for element z, , is determined by equations (4.22c,d) above, while the

solutions for z, are determined by:

0=q(r?)r, - |usin(6, - ,), (4.23a)

0= p(r?)r, +|u|cos(6, - ¢, ) - 2,. (4.23b)

This motion is characterized by the first element oscillating with a solution that is
independent of the other oscillators. This is an example of mode localization in the

symmetric system, where the motion of one oscillator is independent from the others.

D_(--) for k even and not equal to 2: The exceptional solutions for this subgroup are for

the first and k/2 element. The solution for the first element is determined by equations

(4.23a,b) above, while the solution for the k/2 element is given by:

0= —CI( I"‘2/2 ) rk/2 + M Sin(ekﬁ - (Pk/Z) + KI'k/2—l Sin(ek/z - ek/z—l) ’ (4.24a)

0= p(r7s )5z +lulcos(8, ~ 0ys) + W1y cos(B,, -0, ) - 3] (4.24b)

D_(+-) for m even and k even not equal to 2: In this case, the exceptional solutions are

given for the first element in equations (4.24a,b) above except with the appropriate
subscript replacements, and for the k/2 element given in equations (4.22¢,d) with the

appropriate subscript replacements.
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This completes the classification of the SW motions. The only twisted subgroups that do

not fall into this category are the TW motions created by the EO excitation.

Traveling Wave Oscillations (TW): The subgroups that are contained in this class are

given by Z (s), Z,,,(s) for k = 2, Z _(s) for k odd not equal to 1, and Z (s) for k even not
equal to 2. The essential difference between all of these groups is the number of elements
in each block, the value of the integer s, and the integer multiple of s that is applied to
translate the phase of each block. Thus, we will consider the solutions of a general Z_(s)
with the integer multiple of p denoted s. Note that s can be positive or negative. This
makes this class of motions different from the IP and SW solutions in that the internal
structure of each block is the same with a varying phase translation between blocks.
Clearly the exceptional elements are the edges of each block, so consider z, as the
exceptional element for the block number 1 that has, without loss of generality, the

reference phase in its forcing. Then the solution for that element is:

—q(rkz)rk + M sin(ek - (pk) + K{rk_,sin(ek -0, - 2ps1t/n) +1_, sin(Bk -0, )] =0, (4.25a)

P( I ) L+ lp'l Cos(ek — @y ) + K{rk—l Cos(ek -6, -2psn/ n)

+1,_, cos(8, —0,_,)-2r,] =0, (4.25b)

and similarly for last elements of subsequent blocks. -

This completes the characterization of the three different classes of motions represented
in table 1. We have thus seen in this subsection that grdup-theoretic analysis can make
the computation of solutions for our equivariant system simpler by delineating at least a
subset of possible equilibrium solutions, and by, in general, reducing the number of
equations to be solved simultaneously in order to compute them. Again, time-dependent
solutions cannot be determined directly from the analysis shown here, and therefore

Hopf-type bifurcations to limit cycle oscillations cannot be determined in this manner.
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4.3 Linear versus Nonlinear Dynamics

In the modeling process, we have assumed linear coupling and forcing models,
whereas the model for free vibration and damping of the individual sub-structures has
been left completely general, including the possiblity that it could be nonlinear. In this
section we would like to discuss the differences between the linear and nonlinear model,

-as they reflect in the dynamics exhibited in the isotropy subgroup lattice for any given
number of oscillators. We proceed through an example and choose 3 oscillators, and
compare the linear dynamics in the lattice versus the nonlinear dynamics as described via
the motivational example discussed above. Recall that the model above was a Duffing
oscillator with hardening springs with the linear damping satisfying the condition for
three simultaneous solutions. Two of these solutions are stable and one is known to be
unstable. We label these three possible solutions as u, m, and I, representing the relative
amplitudes of oscillation where u corresponds to the largest amplitude of oscillation
(upper), m corresponds to the one oscillating with intermediate amplitude (middle), and |
corresponds to the oscillator vibrating with the smallest amplitude (lower). The u and 1
motions are known to be the stable ones while the m motion is unstable.

The isotropy subgroup lattice for the three oscillators is shown in figure 3. The
choice of subgroup in the top row for the system motion is determined by the excitation,
either uniform or EO excitation in this case. In the case of a linear free vibration model
for this case, the same value of parameters for all the oscillator, can only give rise to one
solution for any given set of initial conditions and forcing for each oscillator. To achieve
the solution associated with the subsequent branch of the lattice (i.e. the D, subgroup)
would require a different set of parameter values for one of the oscillators so that it may
have a differing solution than the other two for a given set of initial conditions. In effect,
one of the oscillators must have a different operating condition from the other two. In
any event, the important point is that only one solution is possible for each oscillator
given any set of operating conditions. ‘

In the case of the nonlinear free vibration model, however, given the same
operating conditions for each oscillator, there can be three possibilities of solution for

each oscillator depending on initial conditions. Thus, it is possible that the arrangement
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of the solutions is (u,m,m), which would then correspond to the D, subgroup, or possibly
(u,m,l) which corresponds to the trivial subgroup. Thus, as usual in nonlinear systems,
the choice of initial conditions is very important since, in this type of system, they
determine where in the isotropy subgroup lattice the system's motion begins. Then
depending on the bifurcation structure, symmetry breaking or symmetry increésing
bifurcations may result that place the system in another part of the lattice. Thus, the
analysis is quite complicated in terms of forming all possible combinations of motions
that may result, and stability analysis is required to identify the possible bifurcation
sequences that can occur connecting all the subgroups. For a set of randomly chosen
initial conditions, the most likely start point for the oscillators will be in the isotropy

subgroups corresponding to the higher dimensional fixed-point subspaces, and therefore
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Figure 3: Isotropy subgroup lattice for n = 3.

Z,(1)
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the dynarmics of interest will proceed up the lattice rather than down starting from the
quiescent state (trivial solution). In the case of three oscillators, it would be extremely
difficult for the system to start with all solutions different by choosing the initial
conditions at random, thereby corresponding to the trivial subgroup, since the middle

solution is unstable.
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CHAPTER 5
PROPOSED RESEARCH

Though there are many questions that can be posed at this point, we wish to
broach the following issues.

To validate our working hypothesis:

1. As mentioned in section 4.1, the proof for the isotropy subgroup lattice for the D xT'-
symmetric system shown in [14] relies on structure in that work that is not contained
in our system. We wish to reformulate the proof and restate the theorem for our
system for the direct forcing case, and, if possible, for the parametric forcing case.

2. As The Equivariant Branching Lemma shown in theorem 1 along with its companion
shown in theorem 2, are the main results in the field of equivariant bifurcation theory,
we will attempt to show definitively whether our system is appropriate for the
application of one of these theorems for both the direct and parametric forcing cases.
In the direct case, for nonzero external forcing, the requirement of the existence of the
trivial solution (z,, z,, ..., ) = (0, 0, ..., 0) is not met, thereby negating the
applicability of theorem 1. However, for the parametric case, this requirement holds.
Therefore, for the parametric forcing case, the following requirements must be shown
in order for theorem 1 to hold: (a). The group must act absolutely irreducibility on
R" in which case the Jacobian can be transformed to c(A)I, where I is the nxn identity
matrix; and (b). The eigenvalue crossing condition, ¢’(0) # 0 must hold. Thus,
absolute irreducibility is the crucial part of the matter. In both the parametric ahd

direct forcing cases, for theorem 2 to hold, the nondegeneracy condition

(df) (Vo) #0, for v, € Fix(Z), for each subgroup  of " such that dim Fix(Z) = 1, is

the crux of the matter since the absolute irreducibility condition is not required.

For the analysis of the dynamics of the system:

1. The primary step is to continue the analysis of the dynamics of the system by solving
the fixed-point solution equations. For a prime number of oscillators, this was shown
to contain a relatively small number of subgroup classes in comparison with a non-

prime number of sub-structures. In the case of an even or odd (non-prime) number of
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oscillators, we would like to show how to systefnatically perform these computations
for low order examples. To perform these computations, the model will be specific to
the Duffing oscillator case of the motivational derived in chapter 3.

We will continue with the analysis of the dynamics of the system comprised of
Duffing sub-structures by noting that Swift [21] provides a similar analysis to ours for
a four oscillator system undergoing Hopf bifurcation from the trivial solution, and
shows a coordinate change that block diagonalizes the Jacobian. This transformation
is constructed by exploiting the circulant structure of the Jacobian matrix. We will
attempt to find, with the aid of Davis [22], a similar set of coordinates to block
transform our arbitrary finite-dimensional system to facilitate a linear stability
analysis for the fixed-point solutions described above for both direct and parametric
forcing. Upon completing this task, discussion of the dynamics for the system shown
in equation (3.9), and in particular, the existence of mode localization will be
determined. This will delineate, for .the low order examples chosen, how the fixed-
point solutions connect to one another as a function of parameters, thereby showing in

detail how the entries of the isotropy subgroup lattice are connected.
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Bajaj, A. K.; FoLLey, C. N.

Three-Dimensional Dynamics of a Continuous Cantilever Tube Conveying a
Pulsatile Flow

We study three-dimensional motions of a continuous cantilever tube which is conveying ¢ fluid with a small time-
periodic variation. Under steady-flow conditions the tube is well known to undergo an O(2)-symmetric, Hopf bifurca-
tion from the downhanging state. For the perturbed O(2)-Hopf normal form, a local bifurcation analysis is performed
and various standing wave, traveling wave, and two-frequency modulated wave type solutions are determined. An
amplitude response diagram is shown for a constant amplitude perturbation, illustrating a possible sequence of bifur-
cations and the associated dynamics as the mean flow rate is increased beyond the critical value.

1. Introduction

In the present work, our interest is in a downhanging cantilever tube which is free to undergo spatial motions. The
planar as well as nonplanar motions of such a tube conveying a uniform flow have been studied in {1,2], and it is
well known that, as the flow rate is increased. the downhanging trivial state becomes unstable by a Hopf instability.
Near the critical flow rate, a Center Manifold reduction results in an O(2)-equivariant, or O(2)-Hopf, normal form,
which has been studied extensively in the literature (see [3]). Introducing a harmonic variation in the flow breaks
the temporal symmetry induced by the Hopf bifurcation. Riecke et al. [4] showed that such a time-modulation
generically breaks this symmetry in O(2) systems. The planar motions of the tube with a pulsatile flow were studied
in [5], and we extend this analysis to three-dimensional motions. We should note that other boundary and support
conditions may also affect the symmetry structure of the underlying normal form (e.g. see [6]). This work is based
on [7] and the reader should refer to it for details.

2. Equations of Motion, Center Manifold Reduction and Normal Form

Consider a cantilever tube system. The usual assumptions of a thin elastic tube and a slug flow are imposed on the
system (see [1]) for deriving the equations of motion. Let O be the origin where the centerline of the tube intersects
the point of support and the fluid enters the tube, and let OZ be along the undeformed state. Let u, v and w be
the displacements of the tube centerline in the X, Y and Z directions, respectively, normalized to the length of the
tube, z be the normalized arc length along the tube, and p, 7 and 8 be the dimensionless flow rate, time and mass
ratio parameters. respectively. With this notation, the dimensionless equations of motion for small nonlinear spatial

motions are {2,3]:
0u dp 6%u 38 [ou [ /0% 82v\?
s PEWH B -0 5m = "3 [F{(Eﬁ) + (a—;)

8 fouw ' = (/0% v\ 6% 8%
—_— | = — — 1
ar [ax ‘/": {A { (83;81_’) + (aza‘_’__) + azzc ('U-) + 61:2£ ('U)} de} dzl:| ) ( )

where
202 (") (), o' ()
Ll =r O0z? +2ﬂp6:t:61" + gzt "’

and a similar equation for v, obtained from (1) by making the transformation (u,v) — (v,u). These equations are
complemented with the usual fixed-free boundary conditions on the ends of the tube ([2,7]). We now perturb the
flow rate and introduce the order parameter, €, by assuming the flow to be of the form p = py + €0 cos 2wT, with
Po the mean flow, and 2w the frequency of the flow fluctuations. The scaling u — €'/2y, v — €'/?v and vector
definition:

du Ov

du v
U= U, UL = oo+ 2Bpoa—x-, v=ug, up = oot 26p08—z’ u = (u1,u2,u3,ua) 7, (2)

o7
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transform the equations for  and v into the form:

%‘—L_ = Lu+eo {Lycos2u7 + Lysin 2.7} u = eN (u.pg, ) + O (€7) . ‘a9
For system (3), we assume the solution in the form of an amplitude expansion:

u(7.z,€) = uo (7,7) +eu; (F.2) + O (€7) ‘ ()
where

4o (7.2) = ay [w(l)ei(...-o?-rol) : lz,(ne_u._,of-o,)} +an [w(2)ei(ﬂ:of+02) " w(?)e—i(wofﬂ'-o:)] , 3,

is the solution of equation (3) with e = 0 at the critical value of the mean flow rate (py = Pcr) where the downhanging
position destabilizes with pure imaginary eigenvalues. The vector functions w'), &), and w(®, &'® represen
identical spatial modes for the linear operator L in the two planes XZ and YZ, and thus. the variables (a;.0y)
and (a2,02) represent the amplitude and phase for motions in these two planes. respectively. Furthermore. the
amplitudes and phases are assumed to be governed by equations of the form,

dar/dr = 4y (a1,1,02.02) + O(e). daz/dr = As (a1, ¢1,a2,62) + O (€),

dél/deBl (a1a¢11a27¢2)+0(6)1 dOQ/dT=B2 (a11¢11a?7®2)+0(6)a (:6)
where the functions 4; and B; depend on the system constants, as well as on ¢, the mean flow rate away from p,,.
and 7. €y = wo — w, the detuning away from the underlying Hopf frequency. These amplitude-phase equations can
be placed into a standard Hopf normal form by introducing the following series of coordinate transformations: (1),
Vi = Q;COS O3, Wi = a;Sino;, i = 1,2, (2). ¥ =vy +ivo, ¥ = wy +iws; and (3). 2z, = 944, 20 = 9 +iw. The resulting
equations are,

dz . - z 2 .

= =X+ M+ (odiz/) + 2[R |af® + (F +2F) j22f7]

dzo = . 7 22 [ s 2 = = 2 T
- = (€31 = i7) z2 + (0d12,/2) + > [F1 [z2" + (F1 + 2F‘;) |21] ] : (1)

Here F; and F> are complex nonlinear coefficients and the second terms on the right hand side break the S temporal
symmetry of the O(2)-Hopf normal form. For the discussion below. we make the parameter identifications n=_=Ehn
6 =oldy] /2, a = B+, and in most of the subsequent discussion of the bifurcation sets. we restrict our attention
to the (n, a) parameter plane. Also, the subscripts r and i refer to the real and imaginary parts of a complex variable.

3. Solutions, Instabilities and Numerical Results

Since the full symmetry of the normal form. equations (7), is O(2), the isotropy subgroup lattice consists of a single
branch containing Z> and the identity [7]. The solutions fixed by the action of Z, are planar oscillations {also
called standing waves (SW)), while the solutions fixed by the identity are the eccentric traveling waves (eTW) and
correspond to elliptical motions of the free end of the tube. By this lattice structure, we expect the downhanging
state of the tube to bifurcate primarily to SW motions and secondarily to the eTW motions.

To study the stability and bifurcations from the trivial solution. we transform the normal form into a biock
diagonal (irreducible) form via the coordinate change v = z; (1.i) + % (1.-%),7 = w, and consider one of the
two-dimensional subspaces for the stability analysis. It can then be shown that there is a pitchfork bifurcation set.
(Po): n* +a® = 82, crossing which may give rise to a SW mode solution; and a primary Hopf bifurcation set. (Hp):
7 = 0.a® > 6°, where the 2-frequency motions arise. These modulated waves lie on a sphere and are denoted by
SWy =, SWz/2 and TTVs, based on the phase relationship. There also arise two codimension-2 points p =0, a = =0,
where the dynamics are determined by the O(2)-Takens-Bogdanov normal form, studied in detail in [8].

In order to investigate nontrivial fixed-point solutions and bifurcations therefrom, we introduce the coordinate
changes z; = r;e', j = 1,2, and subsequently use the coordinates (A, .6,8) defined by r; = Acos(o/2). ra =
Asin(0/2), 8 = 6; — 6>, and § = 6, + 6. Here, r; and r, are the amplitudes, and 8; and 6. are the phases of
the left and right traveling waves. It turns out that the § variable is decoupled from the other three variables
in the vector field. The SW motions are solutions given by 4y = constant, ¢y = /2,00 = constant, with the
value of & changing smoothly with the system parameters. For these fixed-point solutions, there exists a pitchfork
bifurcation set. Psy, where the eTW motions arise from the SW solutions; a secondary Hopf bifurcation set.
Hsyw, where a SW solution gives rise to 2-frequency motions that lie on a torus, denoted MW; and a saddle-
node bifurcation set, SNsw, where the two SW modes annihilate each other. The eTW solutions are defined by
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1 = constant.oq = constant # 0.7/2.7, and 6y = constant. We evaluate the stability of these elliptic traveling
vave motions. and those of the spherical and toral motions. only for the specific numerical results described below.

From the analysis of the perfect O(2)-Hopf normal form. it is well known (3] that the dynamical behavior is
determined by the real parts of the nonlinear coefficients. Fir and Fs,. The four coordinate axes and the relation
Fy + F2r = 0 divide the (Fir, ;) plane into six regions (I, IL ... VI) of qualitatively distinct behavior. For the
cantilever tube, it was shown in {2] that Fi, < 0 and Fy, + Fa, < 0, irrespective of the tube mass ratio 4%. These
conditions lie in regions III and IV of the plane of nonlinear coefficients and, thus, the only possible bifurcating
motions for the tube for the case of steady flow are supercritical standing and pure traveling wave modes. In region
[II. for which both F, and F, are negative. the pure TW mode is the one which is stable. In view of this result
and the expectation that the symmetry-breaking introduced by periodic flow fluctuations will enhance the SW mode
solutions. we have chosen to present numerical results for a tube of mass ratio 3% = 0.65, which belongs to a case in
region ITI of the (Fy, F2,) plane.

Figure 1 shows a partial bifurcation set in the (7, a) plane.

Figure 1: The partial bifurcation set and the parameter variation line, slope = -1.25, a9 = 10.

Superimposed on the bifurcation set is a line with the definition a = mn + ag, along which the mean flow rate 7 is
varied. The various bifurcation or stability boundaries. as already defined above, are also identified on the figure.
The corresponding bifurcation response diagram, with the nature of the various solutions indicated, is shown in
figure 2. Most of this diagram has been generated using AUTO, with results and stability verified by the analysis
indicated above.
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Figure 2: The Amplitude Response vs. Mean Flow Rate.
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The trivial solution is stable for n < 0. At n = 0 (point 4). as the primary Hopf line Hy is crossed, spherical
2-frequency motions. SWy , SW.,y and TW5. arise. Of these motions only the SW. /2 mode'is stable. In the
resulting motion. the phase angle o remains constant at =/2 and. therefore, the motion of the tube is confined 1o a
plane passing through the OZ axis. There also arises a stable eTW solution which corresponds to the end of the tube
following a nearly elliptical path. Note that the spherical modes cannot be generated by AUTO. and averaging has
been used to estimate the solutions in the neighborhood of n = 0. with verification for higher values of n by direct
numerical simulation. Numerical simulations suggest that the stable SW.,» motion ends at 7 = 1.805. The elliptical
traveling wave solution becomes unstable by a Hopf bifurcation (point 10) and gives rise to a stable MW solution.
The unstable eTW connects, at point 8. with the unstable SW mode. The stable and unstable SW modes exist
between the two branches of the SNy curve (points 5 and 6) and the upper branch of the SW modes undergoes,
at point 9, a pitchfork bifurcation into the stable eTW mode as the Psyy curve is crossed. The eTW mode is stable
for all flow rates beyond point 9. with the motion becoming more circular as 7 is increased.

As the flow rate 7 is quasi-statically increased, an interesting sequence of motions is observed. For small and
positive 7, two stable solutions exist. If the disturbances are nearly planar, the 2-frequency motion (SW, /2 mode)
is achieved in steady-state. If. however, the out-of-plane component of the disturbance is sufficiently large, elliptical
traveling wave motion is the resulting steady-state motion. The eTW motion connects to the amplitude and phase
modulated motion via the secondary Hopf bifurcation. This motion (MW mode) exists over a very small mean
flow interval and further increase in the flow rate results in the response jumping to the modulated planar motions
(SW, /2 mode). Over the flow interval 1.72 < 7 < 1.805, both the modulated planar motion and the planar periodic
motion (SW mode) coexist. Beyond n &~ 1.805, all initial conditions result in planar periodic oscillations. which
then give way to elliptical periodic oscillations (eTW mode) once the flow rate is increased past the point 9. No
subsequent bifurcations are observed beyond this point.
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